Deep learning enabled inverse design in nanophotonics
نویسندگان
چکیده
منابع مشابه
Nanophotonics-enabled solar membrane distillation for off-grid water purification.
With more than a billion people lacking accessible drinking water, there is a critical need to convert nonpotable sources such as seawater to water suitable for human use. However, energy requirements of desalination plants account for half their operating costs, so alternative, lower energy approaches are equally critical. Membrane distillation (MD) has shown potential due to its low operating...
متن کاملInverse Reinforcement Learning via Deep Gaussian Process
We propose a new approach to inverse reinforcement learning (IRL) based on the deep Gaussian process (deep GP) model, which is capable of learning complicated reward structures with few demonstrations. Our model stacks multiple latent GP layers to learn abstract representations of the state feature space, which is linked to the demonstrations through the Maximum Entropy learning framework. Inco...
متن کاملMaximum Entropy Deep Inverse Reinforcement Learning
This paper presents a general framework for exploiting the representational capacity of neural networks to approximate complex, nonlinear reward functions in the context of solving the inverse reinforcement learning (IRL) problem. We show in this context that the Maximum Entropy paradigm for IRL lends itself naturally to the efficient training of deep architectures. At test time, the approach l...
متن کاملDeep Convolutional Framelets: A General Deep Learning for Inverse Problems
Recently, deep learning approaches with various network architectures have achieved significant performance improvement over existing iterative reconstruction methods in various imaging problems. However, it is still unclear why these deep learning architectures work for specific inverse problems. Moreover, in contrast to the usual evolution of signal processing theory around the classical theo...
متن کاملInitial blank design of deep drawn orthotropic materials using inverse finite element method
In this work, an inverse finite element formulation was modified for considering material anisotropy in obtaining blank shape and forming severity of deep drawn orthotropic parts. In this procedure, geometry of final part and thickness of initial blank sheet were known. After applying ideal forming formulations between material points of initial blank and final shape, an equation system was obt...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nanophotonics
سال: 2020
ISSN: 2192-8614,2192-8606
DOI: 10.1515/nanoph-2019-0474